原题链接:https://www.patest.cn/contests/pat-a-practise/1085
1085. Perfect Sequence (25)
Given a sequence of positive integers and another positive integer p. The sequence is said to be a "perfect sequence" if M <= m * p where M and m are the maximum and minimum numbers in the sequence, respectively.
Now given a sequence and a parameter p, you are supposed to find from the sequence as many numbers as possible to form a perfect subsequence.
Input Specification:
Each input file contains one test case. For each case, the first line contains two positive integers N and p, where N (<= 105) is the number of integers in the sequence, and p (<= 109) is the parameter. In the second line there are N positive integers, each is no greater than 109.
Output Specification:
For each test case, print in one line the maximum number of integers that can be chosen to form a perfect subsequence.
Sample Input: 10 8 2 3 20 4 5 1 6 7 8 9 Sample Output: 8
给出N个数和一个参数P,选出一些数,使得这些数里的最大值M和最小值m满足M <= m * P,求出n的最大值,n是满足条件的序列中数字的个数。
排序,然后i从0到N-1,依次寻找最大j,注意,由于找的最长的序列,故可以i进行变化使,j+1就行,使当前序列长度不变,节约时间。 需要注意的是: 1. 变量的类型啊,数据和P都是10^9的,int放不下。。
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 | #include "iostream" #include "algorithm" using namespace std; int N; long long P; long long data[100000 + 5]; int ans = 0; void init(){ int i; cin>>N>>P; for(i = 0; i < N; i++) cin>>data[i]; } void cal(){ int i,j; long long k; for(i = 0, j = 0; i < N,j < N; i++,j++){ k = data[i] * P; j = i + ans; while(j < N && data[j]<=k){ ans = max(ans,j-i+1); j++; } } } int main(){ init(); sort(data,data + N); cal(); cout<<ans<<endl; //system("pause"); } |
发表评论:
评论列表: