我们知道, 一个简单的神经网络可以是这样的, 分为多个层, 输入层、隐藏层和输出层. 在层与层之间, 有权重 $w_{ij}^k$ , 表示第k层的第i个节点到下一层的第j个节点的权重. 再每一层, 都会有个激活函数, 用于归一化, 也可以说是计算该层节点的输出.
所谓正向传播, 就是依据这一过程由输入层一直延续到输出层.