机器学习中的牛顿法和拟牛顿法

在神经网络中, 处理学习进程的程序称为训练算法. 有许多这样的训练算法, 并有不同的特点和效用.

在训练神经网络中, 算法的目的就是求出极值点, 在此之中, 有5大算法.

1. 梯度下降法

梯度下降法式最简单的训练算法, 它需要计算出梯度向量, 根据梯度向量以及当前的点和学习率计算出当前步长, 以此来向极值点更近一步, 经过多次迭代, 最终到达极值点.

2. 牛顿法