原题链接:https://www.patest.cn/contests/pat-a-practise/1103
1103. Integer Factorization (30)
The K-P factorization of a positive integer N is to write N as the sum of the P-th power of K positive integers. You are supposed to write a program to find the K-P factorization of N for any positive integers N, K and P.
Input Specification:
Each input file contains one test case which gives in a line the three positive integers N (<=400), K (<=N) and P (1 < P<=7). The numbers in a line are separated by a space.
Output Specification:
For each case, if the solution exists, output in the format:
N = n1^P + ... nK^P
where ni (i=1, ... K) is the i-th factor. All the factors must be printed in non-increasing order.
Note: the solution may not be unique. For example, the 5-2 factorization of 169 has 9 solutions, such as 122 + 42 + 22 + 22 + 12, or 112 + 62 + 22 + 22 + 22, or more. You must output the one with the maximum sum of the factors. If there is a tie, the largest factor sequence must be chosen -- sequence { a1, a2, ... aK } is said to be larger than { b1, b2, ... bK } if there exists 1<=L<=K such that ai=bi for i
bL If there is no solution, simple output "Impossible".
Sample Input 1: 169 5 2 Sample Output 1: 169 = 6^2 + 6^2 + 6^2 + 6^2 + 5^2 Sample Input 2: 169 167 3 Sample Output 2: Impossible
输入N,K,P; 将N由K个数表示出来,这K个数必须是某个正整数的P次方。输出结果中K个数降序排列,如果存在多个,取使得K个正整数之和最大的那一组。
DFS搜索结果,为节省时间,先将正整数的P次方存入数组factor中,上限为i^P<=N。主要代码dfs(n,maxnum,k)的作用是将n用k个不超过正整数为maxnum的P次方的数表示出来。 当n==k==0时,即达到要求了,判断答案是否更好,若好,则替换。 其中有两个剪枝操作 1. 若全部由K个最大正整数的P次方表示也不能达到n,那肯定没有解决方案,剪枝剪掉。
1 2 | if(n > factor[maxnum] * k) return; |
1 2 | if(n - factor[i] < 0) continue; |
本人在此题上写了一个代码,第5个点总是过不去,经过两个晚上的debug,发现全局变量被修改了,原本init()函数里并没有“sumOfAns = 0;”这句代码,在执行第5个测试点时,init()执行完之后,sumOfAns的值就被修改为441,十分莫名其妙,故加上了一句。并写了一个博文以记录。 C++全局变量值被修改
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 | #include "iostream" #include "math.h" using namespace std; int N,K,P; int factor[20 + 1]; int maxNum; int ans[400 + 5]; int sumOfAns = 0; int tempAns[400 + 5]; void init(){ cin>>N>>K>>P; maxNum = 1; factor[1] = 1; while(factor[maxNum] <= N){ maxNum ++; factor[maxNum] = pow(maxNum * 1.0,P); } maxNum --; sumOfAns = 0; } void dfs(int n,int maxnum,int k){ static int sum = 0; if(n > factor[maxnum] * k) return; if( ( n && (!k)) || ((!n) && k)) return; int i; if(n == 0 && k == 0){ if(sum > sumOfAns){ for(int j = 1; j <= K; j++) ans[j] = tempAns[j]; sumOfAns = sum; } return; } for(i = maxnum; i >= 1; i--){ if(n - factor[i] < 0) continue; tempAns[K - k + 1] = i; sum += i; dfs(n - factor[i],i,k-1); sum -=i; } } void printAns(){ if(!sumOfAns){ cout<<"Impossible"<<endl; return; } cout<<N<<" = "<<ans[1]<<"^"<<P; for(int i= 2; i <= K; i++){ cout<<" + "<<ans[i]<<"^"<<P; } cout<<endl; } int main(){ init(); dfs(N,maxNum,K); printAns(); system("pause"); } |
发表评论:
评论列表: